Ubuntu 18.04 설치
1, 부팅시 Delete 연타
2. advanced mode(F6) -> 컴퓨터마다 다름
3. Boot
4. Boot Option -> Usb 설정
5. Exit
6. 가만히 냅두기
7. install ubuntu
8. continue
9. Installation type에서 erase... 선택
10. 한글 설정
chrome 설치하기: https://webnautes.tistory.com/1184
환경 셋팅 (RTX 3090) - 465버전
3090 Driver - https://velog.io/@cychoi74/%EC%9A%B0%EB%B6%84%ED%88%AC-18.04-NVIDIA-%EB%93%9C%EB%9D%BC%EC%9D%B4%EB%B2%84-%EC%84%A4%EC%B9%98
Cuda 11.1
cuDNN 8.0.4
TensorRT 7.2.2.3
CUDA 11.0, cudnn 11.x: https://cafepurple.tistory.com/39
tensorRT: https://eehoeskrap.tistory.com/414
TAR File
tensorRT를 /usr/local/cuda-xxxx/ 에 옮겨주기
.bashrc 맨 마지막 경로 추가:
export CUDA_HOME=/usr/local/cuda
export TRT_HOME=${CUDA_HOME}/TensorRT-7.2.3.4
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${TRT_HOME}/lib
PATH=${CUDA_HOME}/bin:${PATH}
export PATH
or
export CUDA_HOME=/usr/local/cuda
export TRT_HOME=${CUDA_HOME}/TensorRT-7.2.2.3
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${TRT_HOME}/lib:/home/hiw/DEV4/lib
export PATH=${CUDA_HOME}/bin:${PATH}
opencv: https://webnautes.tistory.com/1186
우리가 쓰는 opencv는 3.4.5
opencv build(3.4.5)
• wget https://raw.githubusercontent.com/milq/milq/master/scripts/bash/install-opencv.sh
• wget https://soynet.io/demo/opencv_345_install.sh
• sudo bash ./opencv_345_install.sh
cmake-gui:
where is the source code: /home/hiw/opencv/opencv-3.4.5
where to build the binaries: /home/hiw/opencv/opencv-3.4.5/build
1. configure
2. world 검색, 체크
3. modul 검색, 경로 opencv-contrib-3.4.5/modules 설정
4. generate
5. 명령창에 'make -j(숫자)'
Opencv Package
sudo apt-get install build-essential cmake git unzip pkg-config libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libgtk2.0-dev libcanberra-gtk* python3-dev python3-numpy python3-pip libxvidcore-dev libx264-dev libgtk-3-dev libtbb2 libtbb-dev libdc1394-22-dev gstreamer1.0-tools libv4l-dev v4l-utils libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libavresample-dev libvorbis-dev libxine2-dev libfaac-dev libmp3lame-dev libtheora-dev libopencore-amrnb-dev libopencore-amrwb-dev libopenblas-dev libatlas-base-dev libblas-dev liblapack-dev libeigen3-dev libhdf5-dev protobuf-compiler libprotobuf-dev libgoogle-glog-dev libgflags-dev gfortran libtiff5-dev mesa-utils libgl1-mesa-dri libgtkgl2.0-dev libgtkglext1-dev python2.7-dev python-numpy -y
https://www.notion.so/SoyNet-Demo-1434f814c340484192f30f1f742035a9
RTX-2080
- 그래픽 드라이버: 460.89
- Cuda: 10.1
- Cudnn v7.6.5 for cuda 10.1
- Tensorflow-gpu 2.3.1
- Keras 2.4.3
RTX-3060
- 그래픽 드라이버: 516.40
- Cuda: 11.2
- Cudnn v8.1.0 for cuda 11.2
- Tensorflow-gpu 2.9.1
- Keras 2.4.3
GPU별 지원 CUDA 버전 확인하기
https://mickael-k.tistory.com/18
※ tensorflow gpu 사용가능 확인
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
※ IDE 주석 관련 설정 ※
Visual Studio - 편집,선택영역 확장 편집.
Pycharm - Clone Caret Above, Below Comment with Line Comment
※ Windows 같은 경우는 Visual Studio 먼저 설치하고 CUDA를 설치해줘야 Visual Studio에서 CUDA를 잡는다. ※
※ Visual Studio Linker -> Input ※
- cudart.lib
- cublas.lib
- cuda.lib
- cudnn.lib
'Linux_Ubuntu' 카테고리의 다른 글
tar 파일 압축 및 해제 (0) | 2022.03.10 |
---|---|
프로세스 생성 (0) | 2021.06.17 |
ubuntu 한글 설정 (0) | 2021.06.15 |
ps 명령어 사용법 (0) | 2021.06.11 |
VI Editor 사용법 (0) | 2021.06.11 |